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Wave-front curvature in geometrical optics
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This paper develops a general method for calculation of the intensity of light propagating in a medium
whose refractive inder(r) varies slowly with position, based on a differential equation for the curvature of
wave fronts. The equation can be integrated along rays, one ray at a time, and gives the changes of intensity
caused by convergence or divergence of the rays. An explicit solution is obtained for light in a cylindrically
symmetric medium having a linear density gradient. Applied to wave mechanics, the method gives a local
semiclassical solution of the three-dimensional Sdimger equation in a form especially suitable for treatment
of collisions. We examine the possibility of extending the method to nonlinear optics.
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I. INTRODUCTION cylindrical symmetry. This solution provides the basic algo-
rithm required for the numerical calculation of light propa-
The method of geometrical optigsay tracing is very  gation in an arbitrary cylindrically symmetric medium.
useful in applications where one wishes to calculate wave With small changes the equations can be adapted to solve
propagation without the computational expense of a full nuthe one-electron Schdinger equation for motion in a poten-
merical solution of the wave equation. tial U(F) (Sec. V). The result is a semiclassicéhree-
Typical applications are the calculation of laser interac-dimensional WKB general solution of the Schiinger
tion with a fluid or plasmd1]. In these applications the laser equation, which is valid near any nonsingular point.
refraction must be calculated with a new geometry after each As an illustration we give the analytic solution for scat-
hydrodynamic time step, perhaps thousands of times, and féering by a spherically symmetric potential. In this case a
this reason the laser refraction must be calculated rapidly. semiclassical scattering wave function is readily obtained
Geometrical optics is a simple and convenient method foand leads to a known semiclassical cross section.
tracing ray trajectories but when it is necessary to calculate It would be useful if these methods could be applied to
the light intensity there are difficulties. Of course, geometri-the propagation of light in a medium having a nonlinear
cal optics becomes inaccurate near focal points or caustiefractive index. If the index of refraction depends upon the
surfaces where the intensity becomes large. This probleright intensity, one cannot trace rays without knowing the
can be dealt with by imposing a diffraction limit on the in- intensity. It appears the method of this paper could be ex-
tensity based on théknown) wavelength. tended to that case by a technique of wave-front tratseg
However, there is a second difficulty because the intensitypec. V).
depends on the density of rays. The intensity is usually cal- We conclude this introduction with a few citations of rel-
culated by numerical sampling; many rays are calculated angvant literature. The basic equations of geometrical optics
an approximate intensity is formed by counting rays passingre given in many placeg,3]. The relation between wave-
through each computational zone. It would be more convefront curvature and intensity is discussed in the context of
nient and more accurate to obtain the intensity on each ray dight propagation in vacuum in Reff3-5]. Recent efforts to
it is being calculated. construct a general formula for propagation with a variable
The intensity varies inversely as the cross-sectional are@dexn(r) are discussed by Kravtsov and Orlgs/.
of a small tube bounded by rays. When light converges to- Results that overlap the work of this paper are likely to be
ward a focus, this tube area becomes smaller and the intefeund in the extensive literature of semiclassical dynamics.
sity rises. Both the changes of area and the changes of intelthe overlap may not be immediately apparent due to differ-
sity due to convergence of the rays are determined by thences of motivation or notation. For example, Kaufnj@h
curvatureof the wave front. gives a differential equation that appears equivalent to Eq.
In Secs. Il and lll these ideas are expressed in mathemat{22). In our paper the goal is to develop the theory into a
cal form. The equations are written for light propagation inpractical computational method for calculating the intensity
an isotropic medium having a known refractive inde¢)  of light refracted by an inhomogeneous fluid.
that varies slowly with position. It appears that the equations
can readily be implemented in numerical computations. Il. GEOMETRICAL OPTICS AND WAVE FRONTS
In Sec. IV we give the analytic solution for light propa-

gation in a medium having a constant density gradient and !n this section we summarize the equations of geometrical
optics for an isotropic medium. It is desired to solve the

Helmholtz equation,
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where n=n(r) is the refractive index, assumed to be aEquation(8) expresses the conservation of energy for a time-
known function of the(vecton position r. In geometrical |ndepender_1t light wave. Equat_|c(8) a_pphes vyhen there is
. - no absorption, but the theory is easily modified to account

optics the changes of(r) over one wave!eng)thzx for absorption. The difficult point is that Eq7) cannot be

=2mcl(nw) are assumed to be small. The electric filld)  jneqrated unless the divergence lofis known, but that

has a slowly varying amplitud&, and a rapidly varying seems to require information about other rays.

phased: In the geometrical optics approximation for linear optics,
e o o . we will see that adjacent rays decouple enough so there is a
E(r)=Eo(r)exdi®(r)]. (2)  closed equation for the light intensity. This equation makes it

possible to propagate the intensity along one ray before cal-

The light intensity is culating the next ray.

| = (c/8m)n(r)|Eqo(r)|2. 3
. INTENSITY AND CURVATURE OF WAVE FRONTS
As written, Eq.(3) includes the change of the photon group
velocity caused by the index. o . ]
Geometrical optics is appropriate whes»\, where\ is Before beginning the mathematics we want to outline the
the wavelength and. is a scale length determined by the intuitive content of the desired formulas. The intensity varies
. o = . . . . along a ray for two reasons, first due to physical absorption
logarithmic derivative oE,. Physically it is evident thdt is or gain) in the propagation medium and second due to con-
the smallest of three numbers: the scale length for gradiem(s 9 bropag

- . i vergence or divergence of rays, i.e., due to changes in areas
of n(r) or the two radii of curvature of the wave frofithis ¢ the small tubes surrounding a ray. Without being precise
can be verified from Eq.33) below]

©! : about the definition of these areas, we expect

In deriving the Helmholtz equation from Maxwell’'s equa-
tions, there is a technical issue associated with gradients of (an)dl/ds= —a—(1/A)dA/ds. 9)
the field amplitude and polarizatid,5,6]. In some geom-
etries these gradients generate corrections tq Baf order  Here « is the material absorption coefficient ardis the
L~2, smaller than the terms of order 2 and (\L) %, (infinitesima) area of a small patch on the wave front
which are treated here. Neglecting terms of orde? we  bounded by rays. For simplicity, absorption is omitted in
can use Egs(1)—(3), but then cannot calculate the polariza- most of the following equations. The second negative sign
tion dependence of the refraction. This approximation is con¢eflects the fact that without absorption the product of inten-

A. Geometrical derivation

sistent with the accuracy of geometrical optics. sity | and areaA would be constant.
The gradient of the phas® is the wave vectoriz(F), For waves propagating in a homogeneous medium, where
which can be written as the index is constant, two successive wave fronts are sepa-
rated by a fixed fraction of a wavelength. Because the wave-
ﬁ@:ﬁ(?):(w/c)n(ﬂ&(;)_ (4)  length is constant, we have

Here N(r) is the unit vector normal to the constant-phase (LA)dA/ds=k1+ ks, (10

surface. The equations that determine the rays are o
where k1, x, are the two principal curvatures of the wave

dF/ds:N:(c/wn)IZ 5) front. The reciprocal of the curvature is the radius of curva-
' ture R;=1/k; . The curvature is defined precisely in Eg0)
- - below.
dk/ds=(w/c)Vn. (6)

For propagation in empty space each radius of curvature

In Egs. (5) and (6) the independent variablg is the arc changes linearly with distance,

length along a ray. The ray trajectory is the solut'ﬁ(ls). R=s+ R? (i=1,2), (12)
Equation(6) is easily proven by analyzing the gradient of
|IZ|2 obtained from Eq(4). Equationg5) and(6) are equiva- Wwhere R? is negative for a concave wave front and positive
lent to Hamilton’s equations for geometrical optics. They canfor a convex wave front(A concave wave front advances
be integrated along one ray in a straightforward manner betoward a focus or caustic, whef® will approach zerg.
cause they do not require any information about other raysEquation(11) is a simple special solution of ER2) given
By substituting Eq.(2) into Eq. (1), using Eq.(4), and  below (see Ref[5]).
neglecting the second derivative Bf,, which is O(L™?), Equations(9)—(11) immediately lead to an equation for
we see that the intensity of light propagating without absorption in a
. R homogeneous mediy5],
2k-VEy=—(div K)E,. (7)
lo(R;Ry) 1. (12
Equation (7) is sometimes called the amplitude transport
equation, and its physical content is made clear by writing itAt a caustic or focal point one or both radj approach zero
as and Eq.(12) diverges, which indicates a breakdown of geo-
. R metrical optics. However, the formula is again valid, with the
div[I1(r)N(r)]=0. (8) same coefficient, on the far side of the singularity.
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Equations(11) and(12) tell how intensity changes as one
moves along a ray, but do not describe the intensity variation
over the wave front. For example, we can imagine light com-
ing through a lens from a source and can imagine drawing
any pattern on the lens, producing a nearly arbitrary variation
of intensity on the first wave front after the leri.the edges
of the drawing are too sharp, diffraction will invalidate the
geometrical optics approximatigriThus the variation of in-
tensity over any wave front is essentially arbitrary except for
the general requirement of geometrical optics that the deriva-
tives must be not too large.

In this paper we want to extend EJ9)—(12) to include

the effect of refraction by a variable indeXr). The key Wave front —
results are Eqs(22) and (25) below, which show how the

curvature of the wave fronts is changed by refraction and
then how the intensity changes are determined by the curva-

FIG. 1. The diagram illustrates the derivation of E2Q). Points

ture. . . A, B, C, andD are all understood to be close togeth#eandC are
Two useful formulas immediately follow from Eqél)—  gne ray whileB andD are on a nearby rayA andB are on the
(6): same wave front, an@ and D are on a nearby wave front. The
.~ . changes in surface normal frofto B are given by the curvature
dn/ds=N-Vn, (13)  formula, Eq.(20a. The changes from to C and fromB to D are
. given by Eqg.(14). Then the changedC, AB, and BD are all
dN/ds=(1/n)H-€n. (14) known, and together give a projection of E@2) for the change
CD.
HereN is the unit vector parallel tk, which points along the
ray, and we use the symbol orientation of the wave front, which is determined by the
~ A direction of the unit vectoN(F).
II=1-NN. (15 Equations(18)—(209 are summarized by the statement

ey . . . thatK is the projection of gradll into the plane tangent to the
O =1I(r) is a symmetric tensadyadig. A dot product with wave front, i.e..

II projects vectors into the plane tangent to the wave front ai

the pointF under consideratiorLl andN obey two obvious -
equations, K=II-VN-II. (20b)

o=, 16 ~ . .
- (16 Because\? is a constantequal to unity the right-hand pro-

jection has no effect and can be omitted.
To calculate the derivativdK/ds we compare two suc-
> . cessive wave fronts that differ by a small phase chafbe
The curvature of the wave front at th-e.pom|s des‘?”bed A first constraint on the derivative dk comes from the
by the curvature tensdf(r) whose defining properties are yequirement that Eq(18) hold everywhere. This condition,
(1) K is a symmetric tensor2) K operates or(and pro-  gptained with the help of Eq(14), is
duce$ vectors in the plane

N-TI=1I-N=0. (17)

K-N

Z)
7<

K= 6, (18) N-dK/ds=dK/ds-N=—(1/n)K-Vn. (21)

=

K=K

=
I

K (19 The equations needed to determét€/ds are obtained by

. - examining four nearby points labeléd B, C, andD in Fig.
(3) For any small displacementr on the wave front, the 1 pointsA andB are in the same wave front, a@andD
change of the surface normal is are in a nearby wave front. PoirtsandC are on the same
ray, andB andD are on an adjacent ray. Equatiof® and

(14) determine the changes’ anddN from A to C and from

In general, there are two directions on the wave front t© D, while Eq. (20) gives the changelN,g between
called principal directions, for which the chand®l is par-  PointsA andB in terms ofdr,g. Combining these relations
allel to dr. The eigenvalues,«, of K are the two curva- We obtain the changeNcp from C to D, and the corre-
tures of the wave front. The reader can make small sketchesponding changelrcp . ThendNCD is the dot product of
to convince himself that the changeJ is parallel todr with ~ (K+ds dK/ds) with drcp. The calculation can be repeated

a positive coefficient for a surface locally convex in the di-with a second linearly independent vectir,g . The for-
rectiondr, corresponding to positive curvature and a diverg-mulas described, in conjunction with E@1), yield Eq.(22)
ing family of rays. The sign of the curvature depends on thebelow for dK/ds.

dN=K-dr. (209
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In this calculation the two surfaces are wave fronts, and Equation(20b) implies
so the calculation producelk/d®, which is converted into

dK/ds with the help of Eq(4). The result is VN=K+N dN/ds (27)
dK/ds=—K-K—(1/n)(N-Vn)K + (1)1 VVn-1I and therefore

—(2n?)-VnVn-II-(1/n)[(K-Vn)N V(nN)=nK+d(nNN)/ds. (28)

+N(€n-|§)]. (22 Thus from an equation that propagaté$nf\l) along the

rays, we are able to propagate the curvature tensor itself.

In checking Eq.(22) the reader will want to remember For any functionf(r) (scalar, vector, or tenspwe have

that becaus& is symmetric, dot products of vectors wikh

can be written in either order. Equati¢22) implies that the df/ds=N.Vf (29)
derivative ofK is also symmetric. It is easily verified that Eq.
(22) is consistent with Eq(21). and therefore
Equation(22) can be derived in various ways. Using a
coordinate system on the wave fronts, several pages of clas- \v df/dszv*ﬂ].v*”d(v*f )/ds. (30)
sical differential geometry lead to E¢R2). Another formal A
derivation of Eq.(22) is indicated in Sec. Il B. We apply these equations fe=nN. Equation(29) gives
If the index is constant, so its gradient is zero, E2R) .
simplifies to d(nN)/ds=Vn (31)
dK/ds=—-K-K (n=cons}. (23)  in agreement with Eq(6). Using Eq.(31) and the simple
formula

The solution of this equation is just E(lL1).
It follows from Eq. (20b) that the divergence of the unit VVn2=2VnVn+2nVvn, (32)
vectorN is given by
- Eg. (30) can be rearranged to give
div N=TrK]= 1+ k5. (249 . . .
_ _ , nd[V(nN)]/ds= —V(nN)-V(nN)+iVVn2. (33
Equation(4) and Eq.(248 can be combined to give a for-
mula for divk: This tensor differential equation includes E§2) among its
components. For example, when we project B3) into the
div k= (wn/c)(k;+ k,) + (w/c)dn/ds. (24bh  plane tangent to the surface using the teridoit is easily
shown that we obtain the corresponding projection of Eq.

Equation(24b) leads through Eq(7) to (22). This is the additional derivation of ER2) mentioned
above. When the index is constant E8@) is very simple. In
di/ds=— (k1 + ko)l (25  sec. IV we solve Eq(33) for an index with a nonzero gra-
dient.

This agrees with Eqg9) and (10) and therefore the refrac- — patyming to the equation for the intensity, and including
tion does_not change the geometrical relation between curvgye absorption coefficient, from Eq.(25) we expect
ture and intensity. .
To summarize, if we knovN, K, andl at a point on one di/ds=—(k1t ko)l —al. (39
ray, then we can evaluate the right-hand sides of Eb®,
(22), and(25) and thereby integrate the intensity along thatUsing Eq.(28), this can be transformed to read
ray without knowing about other rays. However, when we A
later examine a nearby ray, its direction is already con- d In(I/n)/ds=—a—(1N)Tr[V(nN)] (35
strained by the assumed initial value §f Thus there is a . . .
requirement that rays launched from the source be consistefifd this form is also convenient.
with the assumed curvature of the first wave front. This re-
quirement is not difficult when the light source is a beam or V. SOLUTION FOR CYLINDRICAL SYMMETRY

is light emerging from a simple lens. In this section we solve Eq$22) and (25) for a cylindri-

o cally symmetric wave in a cylindrically symmetric medium
B. Formal derivation having a constant density gradient, corresponding to a linear

We now give another derivation of E¢2) in which the ~ dependence of dielectric function on position. _
mathematics is more straightforward while the geometry is Any smooth density profile can be approximated on a grid

less evident. of triangular zones containing locally linear densities, so the
We examine the tensor results of this section form the basis for a numerical calcu-
A lation of light propagation in a cylindrically symmetric me-
VV®=(w/c)V[n(r)N(r)]. (26)  dium having any indexi=n(r,z).

Cylindrical symmetry means two things here: First, the
From Eq.(26) it is clear this tensor is symmetric. index depends only on the variableg, and this is a con-



57 WAVE-FRONT CURVATURE IN GEOMETRICAL OPTICS

straint on the propagation medium. In addition the phase

6131

The first step is to remove thgdependence. By assump-

depends only om,z so the wave fronts are surfaces of revo-tion the phased is independent off, but the radial unit
lution about thez axis, and this is a constraint on the wave yectorr depends ord. Then we easily see
being traced. The second assumption is consistent with the

first.

8-VV®D=(1/r)(ad/or) 6. (46)

The solution gives a closed-form expression for the light

intensity.

The dielectric functiore=n? is usually a linear function

In Eq. (46), @ is the unit vector in the direction. Comparing
the left side to Eq(28) and the right side to Eq4), we can

of the material density and so we assume that its gradient isee Eq(46) gives one eigenvalue of the curvature tenisor

independent ofr and z over the region considered. This

means

Vn2=a(6).

N

a= (36)

We assume thad is independent of andz, but underline

the fact that any vector that lies in thez plane depends on

6 because the radial unit vectoe=1(6) depends ord. (We
use cylindrical polar coordinatesé,z.)

The equations simplify when the ray is writterr F(u) in

terms of an independent variahl¢s) defined by

ds/du=n[r(u)]. (37)

In the equations that follow, derivatives with respectitare

directional derivatives along a ray.
The Hamilton equations, Eqé5) and(6), become

dr/du=v, (38)
dv/du=a, (39

with
v=nN. (40)

K- 0=x,0 (47)

with

K= (N-F)/r. (48)
In Eq. (48) the two vectors If\l,?) in the numerator are unit
vectors, so the units are still correct. Equati{@8) can also
be written as

nkg=d(In r)/du. (49
In Eq. (49) the scalar radius appears on the right-hand side.
Equation(49) will help solve Eq.(45). We can also form the
tensor derivative,

d(nk,00)/du=— (nk,00) - (Nk,00)+(a-7/r) 9.
(50

Here the combinatiordd is a tensor made from the unit

vector # and the numerator of the last term contaiﬁsfo,
wherer is again the radial unit vector, while the denominator
is the scalar radius. Equation(50) will help solve Eq.(43).
Equationg47)—(50) have a geometrical interpretation that
is worth comment. The curvature of a surface is determined
by the sphere which has second-order contact with the sur-

Herev is a dimensionless quantity proportional to the waveface in a principal direction.

vectork=(w/c)v; andN is the unit vector along.

For the case considered hesedoes not vary withu and
Egs.(38) and(39) are easily solved for the ray trajectory:
v=vg+ua, (41)

F=ro+Uvy+ sau. (42

When the wave front is a surface of revolution, one
sphere makes contact with the wave front around a circle of
fixed r,z. The radius of this sphere is determined by the
distance to the axis along the local normal to the surface. In
simple language, all rays launched from points around this
circle would arrive in phase on the axialthough they may
be further refracted as they mgv&o for the curvature in the
6 direction, the center of curvature is always on thaxis.
The intensity changes associated with this curvaiyere

This is a simple special solution of the equations of geoeasily determined because the total energy inside a given
metrical optics. Now we find the intensity implied by this cone of rays is conserved.

solution.
The intensityl is found by solving Eq(33), which can be
written as

dG/du=—-G-G+1VVn?

N[

(43
where
G=V(nN). (44)

The solution of Eq(43) will then be used to solve E@35)
(with «=0), which can be written as

(d/du)In(l/n)=—-Tr G. (45)

To complete the solution of Eq43) we remove the
known part ofG, defining

Q=G—nx,00. (51)
From Eq.(47) we easily see that
Q- 6=0 (52)
and then the differential equation f@ is
dQ/du=-Q-Q. (53)

This equation is easily solved,
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Q=Qo/(1+uQ), (54)

whereQq is the initial value corresponding to=0.
We define a function

D=def(1+uQp). (55
The form of Q, can be found from Eq28) and gives

D =(1+unox®)(1+ua-No/ng) —u?(to-aing)2. (56)

In Eq. (56), t=NX 4 is a unit vector tangent to the wave
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whereP is the electron probability density amglis the ten-
sor gradient of the wave vectér

P=|v|? (65)

B=VKk. (66)

Solution of Eq.(63) gives a practical way to construct the
prefactor for the semiclassical wave function. The prefactor
is usually constructed by evaluating the Van Vleck determi-
nant, which can be written in various waj], but can be
evaluated only if one knows the action as a function of a

front, the subscript or superscript O denotes the initial valuegomplete set of independent constants of the motion. Thus

atu=0, and«? is the initial curvature in thé direction.
We now observe

Tr Q=d(In D)/du, (57)
which follows from the formula
Tr Q=(d/du)Tr In(1+uQp). (58)
With this the solution to Eq(45) is immediately found:
(d/du)(IrD/n)=0 (59
or
I=(n/rD)(ro/ng)lg (60)

asDy=1.

one needs a complete solution to the problem in order to use
the Van Vleck formula. In contrast to this, the method based
on Eq. (63) gives the prefactor at based on information
about one trajectory passing throu@lwithout requiring any
additional information.

Equations(22) and (25) can be applied as follows: an
atom or molecule is described by a potentir), which
need not be spherically symmetric. An electron scattering
from this target is described by a scattering wave function
having the asymptotic form

y—explikz) + (1) f(6)expikr). (67)

This wave function can be approximately represented by a
finite number of classical trajectorid®]. The trajectories
begin on a source plane at> — . Solution of Eqs(63) and

Equation(60) gives the intensity along the ray in terms of (64 Will give the wave function, trajectory by trajectory,

initial values. The initial point is an arbitrary point along the
ray. It is necessary to know?, which must be consistent

with the initial directions of the nearby rays.
We close this section with an expression fgr.

nk, = —(a-N)/n+(d/du)ln D. 62

without requiring an overall normalization.

While the angular momenturilL is constant along each
trajectory, the scattering function of E@7) is not an eigen-
function of angular momentum and different trajectories
have different values df determined by their initial impact
parameters.

To illustrate the method, we solve Ed$3) and(64) for

This is the curvature in the direction defined by the unitthe scattering produced by a spherically symmetric potential
vectori. It is easily seen that Eq61) reproduces the as- U(r). Various classical and semiclassical solutions are avail-

sumed initial value.

To help the reader understand E60) we point out that

able in the literatur¢10].
Along each electron trajectory the angular momenfim

there is another derivation. One could have taken threés constant. The trajectories begin &at>—~. We use the

nearby rays, differenced their positiofet equal values of
the phasg and formed the area of the small triangle defined
by them. Then using the relation between intensity and area,

this would again give Eq(60).

V. APPLICATION TO WAVE MECHANICS

notations

q(r)=(k*=L%/r?), (68)
A(r)= frokzdr/(rzqe'). (69)

The one-electron Schdinger equation is a special case of Here q(r) is the radial wave vectork(r) is the three-

the wave equation, obtained by the substitution

[n(r)w/c]?=k2=(2m/A2)[E—U(r)]. (62)

HereE is the particle energy anU(F) is the potential en-
ergy. With this substitution, Eq$22) and(25) translate into

the following equations:
k dB/ds=—B-B+3VVKk?, (63

k dP/ds=—P Tr B, (64)

dimensional wave vector from E¢2), andA(r) is an inte-
gral related to the angular position,

A(r)=—da(r)/dL, (70)

6(r)=w—frodr/(r2q). (71)

In Egs.(69) and(71), for the incoming portion of the orbit
the integrals run from the current radiusto a fixed large
radius(=rg, say. This means that the derivative éfwith
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respect tor is positive. For very large on the incoming For this purpose one must be clear about the limitations of
portion of the orbit the anglé is approximatelyr, consistent geometrical optics and ray tracing. These methods appar-
with Eq. (67). ently cannot easily calculate harmonic production or even

While the calculation is generally straightforward, there isfine-scale (diffraction-limited nonlinear beam breakup.
one interesting technicality: Eq63) is a vector(dyadid ~ However, geometrical optics might be able to correctly
equation, and to evaluatB/ds in spherical polar coordi- model large-scale self-focusing or channel formation pro-
nates it is necessary to differentiate unit vectors as well agyced by the nonlinear index.
components oB. In guessing the solution, we were helped  For this purpose the challenge is that one requires the
by the result given in Eq48), which also applies here. Let- jnensity to evaluate the nonlinear part of the index of refrac-
ting these clues_sufflce,_vv_e S|mply_|nd|cate_ the re_sul_t and thﬁon. Equation(25) gives the required intensity. However,
reader can confirm that it is a solution by differentiation. TheEq (22) asks for the gradient of the index, and to evaluate
components oB are this it would be necessary to insert information about the

B, =—dg/dr+L%(rq?A), (729 gradient of the intensity. Thi; is not available in a calculation
that proceeds one ray at a time.
B,,=L/r2—L/(r3gA), (72b The obvious solution to this difficulty is to treat an entire
wave front at once. For cylindrically symmetric systems, this
Byy=1/(r2A)—qr, (729  Is essentially the same computational and storage problem as
the original ray-tracing calculation, but for the general three-
Bsy=—0/r—L cos /(r? sin 6). (720) dimensional case would require more computer memory.

- _ However, if one has the curvature and intensity data on one
These are verified by showing that they solve Bf). For  wave front, then Eqg22) and(25) tell one how to construct
example, the corresponding information on the next wave front.

—q dB, /dr—(2k/r)(N- 8)B,,

— _(Br2r+BrZH)_(m/ﬁZ)dZUler. (73) VIl. CONCLUSION

This paper has presented the formulation of a general
method for directly calculating the intensity of light in geo-
Ymetrical optics. The method is based on a geometrical study
of wave-front curvature and the way in which the curvature
evolves as light moves along a ray. The most important fea-
ture of the method is that the adjacent rays decouple enough

P=|y|2=const[r2q(r)A(r)sin 6]. (74)  so the intensity can be calculatere ray at a timgeven
though the intensity changes physically reflect the bunching
We have not found this formula in the literature of semiclas-or dispersal of rays associated with convergent or divergent
sical scattering theorge.g., it does not appear in R¢fL.0]). beams.
Equation(74) gives the prefactor for a semiclassical scatter- Two examples show how the general equations can be
ing function of the asymptotic form given in E¢67), which ~ solved. The equations are suitable for numerical applications,
of course differs from the prefactor for partial-wave eigen-which are under way. We expect that this method will pro-
functions. vide a simple and convenient way to obtain approximate
In the asymptotic regiofy|? is simply related to the scat- information about the intensity of light refracted through a
tering cross section. Equatiqi@4) leads to a known semi- dense inhomogeneous fluid, potentially including effects of
classical differential cross sectidiobtained by a different the index nonlinearity.
method in Ref[10]). The agreement confirms the method
given in Egs.(63) and(64).
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The minus sign on the first term~q dB/dr) appears for the
incoming part of the trajectory, because the radial velocit
points toward the origin.

From Eqgs.(72) for B the probability density is found to
be

VI. APPLICATION TO NONLINEAR OPTICS
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