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Wave-front curvature in geometrical optics

Richard M. More and Keiji Kosaka*
Lawrence Livermore National Laboratory, Livermore, California 94550
~Received 16 May 1997; revised manuscript received 22 January 1998!

This paper develops a general method for calculation of the intensity of light propagating in a medium
whose refractive indexn(r ) varies slowly with position, based on a differential equation for the curvature of
wave fronts. The equation can be integrated along rays, one ray at a time, and gives the changes of intensity
caused by convergence or divergence of the rays. An explicit solution is obtained for light in a cylindrically
symmetric medium having a linear density gradient. Applied to wave mechanics, the method gives a local
semiclassical solution of the three-dimensional Schro¨dinger equation in a form especially suitable for treatment
of collisions. We examine the possibility of extending the method to nonlinear optics.
@S1063-651X~98!08305-6#

PACS number~s!: 42.15.Eq, 42.15.Gs
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I. INTRODUCTION

The method of geometrical optics~ray tracing! is very
useful in applications where one wishes to calculate w
propagation without the computational expense of a full
merical solution of the wave equation.

Typical applications are the calculation of laser intera
tion with a fluid or plasma@1#. In these applications the lase
refraction must be calculated with a new geometry after e
hydrodynamic time step, perhaps thousands of times, and
this reason the laser refraction must be calculated rapidl

Geometrical optics is a simple and convenient method
tracing ray trajectories but when it is necessary to calcu
the light intensity there are difficulties. Of course, geome
cal optics becomes inaccurate near focal points or cau
surfaces where the intensity becomes large. This prob
can be dealt with by imposing a diffraction limit on the in
tensity based on the~known! wavelength.

However, there is a second difficulty because the inten
depends on the density of rays. The intensity is usually
culated by numerical sampling; many rays are calculated
an approximate intensity is formed by counting rays pass
through each computational zone. It would be more con
nient and more accurate to obtain the intensity on each ra
it is being calculated.

The intensity varies inversely as the cross-sectional a
of a small tube bounded by rays. When light converges
ward a focus, this tube area becomes smaller and the in
sity rises. Both the changes of area and the changes of in
sity due to convergence of the rays are determined by
curvatureof the wave front.

In Secs. II and III these ideas are expressed in mathem
cal form. The equations are written for light propagation
an isotropic medium having a known refractive indexn(rW)
that varies slowly with position. It appears that the equatio
can readily be implemented in numerical computations.

In Sec. IV we give the analytic solution for light propa
gation in a medium having a constant density gradient

*Permanent address: Department of Physics, Okayama Un
sity, Okayama, Japan.
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cylindrical symmetry. This solution provides the basic alg
rithm required for the numerical calculation of light prop
gation in an arbitrary cylindrically symmetric medium.

With small changes the equations can be adapted to s
the one-electron Schro¨dinger equation for motion in a poten
tial U(rW) ~Sec. V!. The result is a semiclassical~three-
dimensional WKB! general solution of the Schro¨dinger
equation, which is valid near any nonsingular point.

As an illustration we give the analytic solution for sca
tering by a spherically symmetric potential. In this case
semiclassical scattering wave function is readily obtain
and leads to a known semiclassical cross section.

It would be useful if these methods could be applied
the propagation of light in a medium having a nonline
refractive index. If the index of refraction depends upon t
light intensity, one cannot trace rays without knowing t
intensity. It appears the method of this paper could be
tended to that case by a technique of wave-front tracing~see
Sec. VI!.

We conclude this introduction with a few citations of re
evant literature. The basic equations of geometrical op
are given in many places@2,3#. The relation between wave
front curvature and intensity is discussed in the context
light propagation in vacuum in Refs.@3–5#. Recent efforts to
construct a general formula for propagation with a varia
index n(rW) are discussed by Kravtsov and Orlov@6#.

Results that overlap the work of this paper are likely to
found in the extensive literature of semiclassical dynam
The overlap may not be immediately apparent due to diff
ences of motivation or notation. For example, Kaufman@7#
gives a differential equation that appears equivalent to
~22!. In our paper the goal is to develop the theory into
practical computational method for calculating the intens
of light refracted by an inhomogeneous fluid.

II. GEOMETRICAL OPTICS AND WAVE FRONTS

In this section we summarize the equations of geometr
optics for an isotropic medium. It is desired to solve t
Helmholtz equation,

$¹21@n~rW !v/c#2%EW ~rW !50W , ~1!
r-
6127 © 1998 The American Physical Society
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6128 57RICHARD M. MORE AND KEIJI KOSAKA
where n5n(rW) is the refractive index, assumed to be
known function of the~vector! position rW. In geometrical
optics the changes ofn(rW) over one wavelengthl

52pc/(nv) are assumed to be small. The electric fieldEW (rW)
has a slowly varying amplitudeEW 0 and a rapidly varying
phaseF:

EW ~rW !5EW 0~rW !exp@ iF~rW !#. ~2!

The light intensity is

I 5~c/8p!n~rW !uEW 0~rW !u2. ~3!

As written, Eq.~3! includes the change of the photon gro
velocity caused by the index.

Geometrical optics is appropriate whenL@l, wherel is
the wavelength andL is a scale length determined by th
logarithmic derivative ofEW 0 . Physically it is evident thatL is
the smallest of three numbers: the scale length for gradi
of n(rW) or the two radii of curvature of the wave front.@This
can be verified from Eq.~33! below.#

In deriving the Helmholtz equation from Maxwell’s equ
tions, there is a technical issue associated with gradient
the field amplitude and polarization@2,5,6#. In some geom-
etries these gradients generate corrections to Eq.~1! of order
L22, smaller than the terms of orderl22 and (lL)21,
which are treated here. Neglecting terms of orderL22 we
can use Eqs.~1!–~3!, but then cannot calculate the polariz
tion dependence of the refraction. This approximation is c
sistent with the accuracy of geometrical optics.

The gradient of the phaseF is the wave vectorkW (rW),
which can be written as

¹W F5kW~rW !5~v/c!n~rW !N̂~rW !. ~4!

Here N̂(rW) is the unit vector normal to the constant-pha
surface. The equations that determine the rays are

drW/ds5N̂5~c/vn!kW , ~5!

dkW /ds5~v/c!¹W n. ~6!

In Eqs. ~5! and ~6! the independent variables is the arc
length along a ray. The ray trajectory is the solutionrW(s).
Equation~6! is easily proven by analyzing the gradient
ukW u2 obtained from Eq.~4!. Equations~5! and~6! are equiva-
lent to Hamilton’s equations for geometrical optics. They c
be integrated along one ray in a straightforward manner
cause they do not require any information about other ra

By substituting Eq.~2! into Eq. ~1!, using Eq.~4!, and
neglecting the second derivative ofE0 , which is O(L22),
we see that

2kW•¹W E052~div kW !E0 . ~7!

Equation ~7! is sometimes called the amplitude transp
equation, and its physical content is made clear by writin
as

div@ I ~rW !N̂~rW !#50W . ~8!
ts
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n
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Equation~8! expresses the conservation of energy for a tim
independent light wave. Equation~8! applies when there is
no absorption, but the theory is easily modified to acco
for absorption. The difficult point is that Eq.~7! cannot be
integrated unless the divergence ofkW is known, but that
seems to require information about other rays.

In the geometrical optics approximation for linear optic
we will see that adjacent rays decouple enough so there
closed equation for the light intensity. This equation make
possible to propagate the intensity along one ray before
culating the next ray.

III. INTENSITY AND CURVATURE OF WAVE FRONTS

A. Geometrical derivation

Before beginning the mathematics we want to outline
intuitive content of the desired formulas. The intensity var
along a ray for two reasons, first due to physical absorpt
~or gain! in the propagation medium and second due to c
vergence or divergence of rays, i.e., due to changes in a
of the small tubes surrounding a ray. Without being prec
about the definition of these areas, we expect

~1/I !dI/ds52a2~1/A!dA/ds. ~9!

Here a is the material absorption coefficient andA is the
~infinitesimal! area of a small patch on the wave fro
bounded by rays. For simplicity, absorption is omitted
most of the following equations. The second negative s
reflects the fact that without absorption the product of inte
sity I and areaA would be constant.

For waves propagating in a homogeneous medium, wh
the index is constant, two successive wave fronts are s
rated by a fixed fraction of a wavelength. Because the wa
length is constant, we have

~1/A!dA/ds5k11k2 , ~10!

where k1 ,k2 are the two principal curvatures of the wav
front. The reciprocal of the curvature is the radius of curv
tureRi51/k i . The curvature is defined precisely in Eq.~20!
below.

For propagation in empty space each radius of curva
changes linearly with distance,

Ri5s1Ri
0 ~ i 51,2!, ~11!

whereRi
0 is negative for a concave wave front and positi

for a convex wave front.~A concave wave front advance
toward a focus or caustic, whereRi will approach zero.!
Equation~11! is a simple special solution of Eq.~22! given
below ~see Ref.@5#!.

Equations~9!–~11! immediately lead to an equation fo
the intensity of light propagating without absorption in
homogeneous medium@4,5#,

I}~R1R2!21. ~12!

At a caustic or focal point one or both radiiRi approach zero
and Eq.~12! diverges, which indicates a breakdown of ge
metrical optics. However, the formula is again valid, with t
same coefficient, on the far side of the singularity.
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57 6129WAVE-FRONT CURVATURE IN GEOMETRICAL OPTICS
Equations~11! and~12! tell how intensity changes as on
moves along a ray, but do not describe the intensity varia
over the wave front. For example, we can imagine light co
ing through a lens from a source and can imagine draw
any pattern on the lens, producing a nearly arbitrary varia
of intensity on the first wave front after the lens.~If the edges
of the drawing are too sharp, diffraction will invalidate th
geometrical optics approximation.! Thus the variation of in-
tensity over any wave front is essentially arbitrary except
the general requirement of geometrical optics that the der
tives must be not too large.

In this paper we want to extend Eqs.~9!–~12! to include
the effect of refraction by a variable indexn(rW). The key
results are Eqs.~22! and ~25! below, which show how the
curvature of the wave fronts is changed by refraction a
then how the intensity changes are determined by the cu
ture.

Two useful formulas immediately follow from Eqs.~1!–
~6!:

dn/ds5N̂•¹W n, ~13!

dN̂/ds5~1/n!PI •¹W n. ~14!

HereN̂ is the unit vector parallel tokW , which points along the
ray, and we use the symbol

PI 51I2N̂N̂. ~15!

PI 5PI (rW) is a symmetric tensor~dyadic!. A dot product with
PI projects vectors into the plane tangent to the wave fron
the pointrW under consideration.PI and N̂ obey two obvious
equations,

PI •PI 5PI , ~16!

N̂•PI 5PI •N̂50W . ~17!

The curvature of the wave front at the pointrW is described
by the curvature tensorKI (rW) whose defining properties ar
~1! KI is a symmetric tensor;~2! KI operates on~and pro-
duces! vectors in the plane

N̂•KI 5KI •N̂50W , ~18!

PI •KI 5KI •PI 5KI ; ~19!

~3! For any small displacementdrW on the wave front, the
change of the surface normal is

dN̂5KI •drW. ~20a!

In general, there are two directions on the wave fro
called principal directions, for which the changedN̂ is par-
allel to drW. The eigenvaluesk1 ,k2 of KI are the two curva-
tures of the wave front. The reader can make small sketc
to convince himself that the changedN̂ is parallel todrW with
a positive coefficient for a surface locally convex in the
rectiondrW, corresponding to positive curvature and a dive
ing family of rays. The sign of the curvature depends on
n
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orientation of the wave front, which is determined by t
direction of the unit vectorN̂(rW).

Equations~18!–~20a! are summarized by the stateme
thatKI is the projection of gradN̂ into the plane tangent to th
wave front, i.e.,

KI 5PI •¹W N̂•PI . ~20b!

BecauseN̂2 is a constant~equal to unity! the right-hand pro-
jection has no effect and can be omitted.

To calculate the derivativedKI /ds we compare two suc-
cessive wave fronts that differ by a small phase changedF.
A first constraint on the derivative ofKI comes from the
requirement that Eq.~18! hold everywhere. This condition
obtained with the help of Eq.~14!, is

N̂•dKI /ds5dKI /ds•N̂52~1/n!KI •¹W n. ~21!

The equations needed to determinedKI /ds are obtained by
examining four nearby points labeledA, B, C, andD in Fig.
1. PointsA andB are in the same wave front, andC andD
are in a nearby wave front. PointsA andC are on the same
ray, andB andD are on an adjacent ray. Equations~5! and
~14! determine the changesdrW anddN̂ from A to C and from
B to D, while Eq. ~20! gives the changedN̂AB between
pointsA andB in terms ofdrWAB . Combining these relations
we obtain the changedN̂CD from C to D, and the corre-
sponding changedrWCD . Then dN̂CD is the dot product of
(KI 1ds dKI /ds) with drWCD . The calculation can be repeate
with a second linearly independent vectordrWAB8 . The for-
mulas described, in conjunction with Eq.~21!, yield Eq.~22!
below for dKI /ds.

FIG. 1. The diagram illustrates the derivation of Eq.~22!. Points
A, B, C, andD are all understood to be close together.A andC are
one ray whileB and D are on a nearby ray.A and B are on the
same wave front, andC and D are on a nearby wave front. Th
changes in surface normal fromA to B are given by the curvature
formula, Eq.~20a!. The changes fromA to C and fromB to D are
given by Eq. ~14!. Then the changesAC, AB, and BD are all
known, and together give a projection of Eq.~22! for the change
CD.
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6130 57RICHARD M. MORE AND KEIJI KOSAKA
In this calculation the two surfaces are wave fronts, a
so the calculation producesdKI /dF, which is converted into
dKI /ds with the help of Eq.~4!. The result is

dKI /ds52KI •KI 2~1/n!~N̂•¹W n!KI 1~1/n!PI •¹W ¹W n•PI

2~2/n2!PI •¹W n¹W n•PI 2~1/n!@~KI •¹W n!N̂

1N̂~¹W n•KI !#. ~22!

In checking Eq.~22! the reader will want to remembe
that becauseKI is symmetric, dot products of vectors withKI
can be written in either order. Equation~22! implies that the
derivative ofKI is also symmetric. It is easily verified that E
~22! is consistent with Eq.~21!.

Equation ~22! can be derived in various ways. Using
coordinate system on the wave fronts, several pages of c
sical differential geometry lead to Eq.~22!. Another formal
derivation of Eq.~22! is indicated in Sec. III B.

If the index is constant, so its gradient is zero, Eq.~22!
simplifies to

dKI /ds52KI •KI ~n5const!. ~23!

The solution of this equation is just Eq.~11!.
It follows from Eq. ~20b! that the divergence of the un

vector N̂ is given by

div N̂5Tr@KI #5k11k2 . ~24a!

Equation~4! and Eq.~24a! can be combined to give a for
mula for divkW:

div kW5~vn/c!~k11k2!1~v/c!dn/ds. ~24b!

Equation~24b! leads through Eq.~7! to

dI/ds52~k11k2!I . ~25!

This agrees with Eqs.~9! and ~10! and therefore the refrac
tion does not change the geometrical relation between cu
ture and intensity.

To summarize, if we knowN̂, KI , andI at a point on one
ray, then we can evaluate the right-hand sides of Eqs.~14!,
~22!, and ~25! and thereby integrate the intensity along th
ray without knowing about other rays. However, when w
later examine a nearby ray, its direction is already c
strained by the assumed initial value ofKI . Thus there is a
requirement that rays launched from the source be consis
with the assumed curvature of the first wave front. This
quirement is not difficult when the light source is a beam
is light emerging from a simple lens.

B. Formal derivation

We now give another derivation of Eq.~22! in which the
mathematics is more straightforward while the geometry
less evident.

We examine the tensor

¹W ¹W F5~v/c!¹W @n~rW !N̂~rW !#. ~26!

From Eq.~26! it is clear this tensor is symmetric.
d
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Equation~20b! implies

¹W N̂5KI 1N̂ dN̂/ds ~27!

and therefore

¹W ~nN̂!5nKI 1d~nN̂N̂!/ds. ~28!

Thus from an equation that propagates¹W (nN̂) along the
rays, we are able to propagate the curvature tensor itsel

For any functionf (rW) ~scalar, vector, or tensor! we have

d f /ds5N̂•¹W f ~29!

and therefore

¹W d f /ds5¹W N̂•¹W f 1d~¹W f !/ds. ~30!

We apply these equations tofW5nN̂. Equation~29! gives

d~nN̂!/ds5¹W n ~31!

in agreement with Eq.~6!. Using Eq.~31! and the simple
formula

¹W ¹W n252¹W n¹W n12n¹W ¹W n, ~32!

Eq. ~30! can be rearranged to give

nd@¹W ~nN̂!#/ds52¹W ~nN̂!•¹W ~nN̂!1 1
2 ¹W ¹W n2. ~33!

This tensor differential equation includes Eq.~22! among its
components. For example, when we project Eq.~33! into the
plane tangent to the surface using the tensorPI it is easily
shown that we obtain the corresponding projection of E
~22!. This is the additional derivation of Eq.~22! mentioned
above. When the index is constant Eq.~33! is very simple. In
Sec. IV we solve Eq.~33! for an index with a nonzero gra
dient.

Returning to the equation for the intensity, and includi
the absorption coefficienta, from Eq. ~25! we expect

dI/ds52~k11k2!I 2aI . ~34!

Using Eq.~28!, this can be transformed to read

d ln~ I /n!/ds52a2~1/n!Tr@¹W ~nN̂!# ~35!

and this form is also convenient.

IV. SOLUTION FOR CYLINDRICAL SYMMETRY

In this section we solve Eqs.~22! and~25! for a cylindri-
cally symmetric wave in a cylindrically symmetric mediu
having a constant density gradient, corresponding to a lin
dependence of dielectric function on position.

Any smooth density profile can be approximated on a g
of triangular zones containing locally linear densities, so
results of this section form the basis for a numerical cal
lation of light propagation in a cylindrically symmetric me
dium having any indexn5n(r ,z).

Cylindrical symmetry means two things here: First, t
index depends only on the variablesr ,z, and this is a con-
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57 6131WAVE-FRONT CURVATURE IN GEOMETRICAL OPTICS
straint on the propagation medium. In addition the phaseF
depends only onr ,z so the wave fronts are surfaces of rev
lution about thez axis, and this is a constraint on the wa
being traced. The second assumption is consistent with
first.

The solution gives a closed-form expression for the lig
intensity.

The dielectric function«5n2 is usually a linear function
of the material density and so we assume that its gradie
independent ofr and z over the region considered. Th
means

aW 5 1
2 ¹W n25aW ~u!. ~36!

We assume thataW is independent ofr and z, but underline
the fact that any vector that lies in ther -z plane depends on
u because the radial unit vectorr̂ 5 r̂ (u) depends onu. ~We
use cylindrical polar coordinatesr ,u,z.!

The equations simplify when the ray is writtenrW5rW(u) in
terms of an independent variableu(s) defined by

ds/du5n@rW~u!#. ~37!

In the equations that follow, derivatives with respect tou are
directional derivatives along a ray.

The Hamilton equations, Eqs.~5! and ~6!, become

drW/du5vW , ~38!

dvW /du5aW , ~39!

with

vW 5nN̂. ~40!

HerevW is a dimensionless quantity proportional to the wa
vectorkW5(v/c)vW ; and N̂ is the unit vector alongkW .

For the case considered here,aW does not vary withu and
Eqs.~38! and ~39! are easily solved for the ray trajectory:

vW 5vW 01uaW , ~41!

rW5rW01uvW 01 1
2 aW u2. ~42!

This is a simple special solution of the equations of g
metrical optics. Now we find the intensity implied by th
solution.

The intensityI is found by solving Eq.~33!, which can be
written as

dGI /du52GI •GI 1 1
2 ¹W ¹W n2, ~43!

where

GI 5¹W ~nN̂!. ~44!

The solution of Eq.~43! will then be used to solve Eq.~35!
~with a50!, which can be written as

~d/du!ln~ I /n!52Tr GI . ~45!
he

t

is

-

The first step is to remove theu dependence. By assump
tion the phaseF is independent ofu, but the radial unit
vector rW depends onu. Then we easily see

û•¹W ¹W F5~1/r !~]F/]r !û. ~46!

In Eq. ~46!, û is the unit vector in theu direction. Comparing
the left side to Eq.~28! and the right side to Eq.~4!, we can
see Eq.~46! gives one eigenvalue of the curvature tensorKI ,

KI • û5kuû ~47!

with

ku5~N̂• r̂ !/r . ~48!

In Eq. ~48! the two vectors (N̂, r̂ ) in the numerator are uni
vectors, so the units are still correct. Equation~48! can also
be written as

nku5d~ ln r !/du. ~49!

In Eq. ~49! the scalar radiusr appears on the right-hand sid
Equation~49! will help solve Eq.~45!. We can also form the
tensor derivative,

d~nkuûû !/du52~nkuûû !•~nkuûû !1~aW • r̂ /r !ûû.
~50!

Here the combinationû û is a tensor made from the un
vector û and the numerator of the last term contains (aW • r̂ ),
wherer̂ is again the radial unit vector, while the denominat
is the scalar radiusr . Equation~50! will help solve Eq.~43!.

Equations~47!–~50! have a geometrical interpretation th
is worth comment. The curvature of a surface is determin
by the sphere which has second-order contact with the
face in a principal direction.

When the wave front is a surface of revolution, o
sphere makes contact with the wave front around a circle
fixed r ,z. The radius of this sphere is determined by t
distance to thez axis along the local normal to the surface.
simple language, all rays launched from points around
circle would arrive in phase on the axis~although they may
be further refracted as they move!. So for the curvature in the
u direction, the center of curvature is always on thez axis.
The intensity changes associated with this curvatureku are
easily determined because the total energy inside a g
cone of rays is conserved.

To complete the solution of Eq.~43! we remove the
known part ofGI , defining

QI 5GI 2nkuûû. ~51!

From Eq.~47! we easily see that

QI • û50 ~52!

and then the differential equation forQI is

dQI /du52QI •QI . ~53!

This equation is easily solved,
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6132 57RICHARD M. MORE AND KEIJI KOSAKA
QI 5QI 0 /~1I1uQI 0!, ~54!

whereQI 0 is the initial value corresponding tou50.
We define a function

D5det~1I1uQI 0!. ~55!

The form ofQI 0 can be found from Eq.~28! and gives

D5~11un0k r
0!~11uaW •N̂0 /n0!2u2~ t̂0•aW /n0!2. ~56!

In Eq. ~56!, t̂5N̂3 û is a unit vector tangent to the wav
front, the subscript or superscript 0 denotes the initial va
at u50, andk r

0 is the initial curvature in thet̂ direction.
We now observe

Tr QI 5d~ ln D !/du, ~57!

which follows from the formula

Tr QI 5~d/du!Tr ln~1I1uQI 0!. ~58!

With this the solution to Eq.~45! is immediately found:

~d/du!~ IrD /n!50 ~59!

or

I 5~n/rD !~r 0 /n0!I 0 ~60!

asD051.
Equation~60! gives the intensity along the ray in terms

initial values. The initial point is an arbitrary point along th
ray. It is necessary to knowk r

0, which must be consisten
with the initial directions of the nearby rays.

We close this section with an expression fork r :

nk r52~aW •N̂!/n1~d/du!ln D. ~61!

This is the curvature in the direction defined by the u
vector t̂. It is easily seen that Eq.~61! reproduces the as
sumed initial value.

To help the reader understand Eq.~60! we point out that
there is another derivation. One could have taken th
nearby rays, differenced their positions~at equal values of
the phase!, and formed the area of the small triangle defin
by them. Then using the relation between intensity and a
this would again give Eq.~60!.

V. APPLICATION TO WAVE MECHANICS

The one-electron Schro¨dinger equation is a special case
the wave equation, obtained by the substitution

@n~rW !v/c#25k25~2m/\2!@E2U~rW !#. ~62!

Here E is the particle energy andU(rW) is the potential en-
ergy. With this substitution, Eqs.~22! and~25! translate into
the following equations:

k dBI /ds52BI •BI 1 1
2 ¹W ¹W k2, ~63!

k dP/ds52P Tr BI , ~64!
e

t

e

d
a,

whereP is the electron probability density andBI is the ten-
sor gradient of the wave vectorkW :

P5uCu2, ~65!

BI 5¹W kW . ~66!

Solution of Eq.~63! gives a practical way to construct th
prefactor for the semiclassical wave function. The prefac
is usually constructed by evaluating the Van Vleck determ
nant, which can be written in various ways@8#, but can be
evaluated only if one knows the action as a function o
complete set of independent constants of the motion. T
one needs a complete solution to the problem in order to
the Van Vleck formula. In contrast to this, the method bas
on Eq. ~63! gives the prefactor atrW based on information
about one trajectory passing throughrW without requiring any
additional information.

Equations~22! and ~25! can be applied as follows: a
atom or molecule is described by a potentialU(rW), which
need not be spherically symmetric. An electron scatter
from this target is described by a scattering wave funct
having the asymptotic form

c→exp~ ikz!1~1/r ! f ~u!exp~ ikr !. ~67!

This wave function can be approximately represented b
finite number of classical trajectories@9#. The trajectories
begin on a source plane atz→2`. Solution of Eqs.~63! and
~64! will give the wave function, trajectory by trajectory
without requiring an overall normalization.

While the angular momentum\L is constant along each
trajectory, the scattering function of Eq.~67! is not an eigen-
function of angular momentum and different trajectori
have different values ofL determined by their initial impac
parameters.

To illustrate the method, we solve Eqs.~63! and ~64! for
the scattering produced by a spherically symmetric poten
U(r ). Various classical and semiclassical solutions are av
able in the literature@10#.

Along each electron trajectory the angular momentum\L
is constant. The trajectories begin atz→2`. We use the
notations

q~r !5A~k22L2/r 2!, ~68!

A~r !5E
r

r 0
k2dr/~r 2q3!. ~69!

Here q(r ) is the radial wave vector,k(r ) is the three-
dimensional wave vector from Eq.~62!, andA(r ) is an inte-
gral related to the angular position,

A~r !52du~r !/dL, ~70!

u~r !5p2E
r

r 0
dr/~r 2q!. ~71!

In Eqs. ~69! and ~71!, for the incoming portion of the orbit
the integrals run from the current radiusr to a fixed large
radius~5r 0 , say!. This means that the derivative ofu with
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respect tor is positive. For very larger on the incoming
portion of the orbit the angleu is approximatelyp, consistent
with Eq. ~67!.

While the calculation is generally straightforward, there
one interesting technicality: Eq.~63! is a vector ~dyadic!
equation, and to evaluatedBI /ds in spherical polar coordi-
nates it is necessary to differentiate unit vectors as wel
components ofBI . In guessing the solution, we were help
by the result given in Eq.~48!, which also applies here. Let
ting these clues suffice, we simply indicate the result and
reader can confirm that it is a solution by differentiation. T
components ofBI are

Brr 52dq/dr1L2/~r 4q2A!, ~72a!

Bru5L/r 22L/~r 3qA!, ~72b!

Buu51/~r 2A!2q/r , ~72c!

Bff52q/r 2L cosu/~r 2 sin u!. ~72d!

These are verified by showing that they solve Eq.~63!. For
example,

2q dBrr /dr2~2k/r !~N̂• û !Bru

52~Brr
2 1Bru

2 !2~m/\2!d2U/dr2. ~73!

The minus sign on the first term (2q dB/dr) appears for the
incoming part of the trajectory, because the radial veloc
points toward the origin.

From Eqs.~72! for BI the probability density is found to
be

P5ucu25const/@r 2q~r !A~r !sin u#. ~74!

We have not found this formula in the literature of semicla
sical scattering theory~e.g., it does not appear in Ref.@10#!.
Equation~74! gives the prefactor for a semiclassical scatt
ing function of the asymptotic form given in Eq.~67!, which
of course differs from the prefactor for partial-wave eige
functions.

In the asymptotic regionucu2 is simply related to the scat
tering cross section. Equation~74! leads to a known semi
classical differential cross section~obtained by a different
method in Ref.@10#!. The agreement confirms the metho
given in Eqs.~63! and ~64!.

In summary, the semiclassical probability density chan
along the particle orbits in a way controlled by the loc
curvature~s! of the wave fronts, and these changes are de
mined by a simple tensor differential equation for the wa
front curvature. The theory gives the expected result fo
simple test case.

VI. APPLICATION TO NONLINEAR OPTICS

We briefly consider the possibility of calculating ligh
propagation in a nonlinear medium.
s

e

y

-

-

-

s
l
r-
-
a

For this purpose one must be clear about the limitations
geometrical optics and ray tracing. These methods ap
ently cannot easily calculate harmonic production or ev
fine-scale ~diffraction-limited! nonlinear beam breakup
However, geometrical optics might be able to correc
model large-scale self-focusing or channel formation p
duced by the nonlinear index.

For this purpose the challenge is that one requires
intensity to evaluate the nonlinear part of the index of refr
tion. Equation~25! gives the required intensity. Howeve
Eq. ~22! asks for the gradient of the index, and to evalua
this it would be necessary to insert information about
gradient of the intensity. This is not available in a calculati
that proceeds one ray at a time.

The obvious solution to this difficulty is to treat an enti
wave front at once. For cylindrically symmetric systems, t
is essentially the same computational and storage proble
the original ray-tracing calculation, but for the general thre
dimensional case would require more computer memo
However, if one has the curvature and intensity data on
wave front, then Eqs.~22! and~25! tell one how to construct
the corresponding information on the next wave front.

VII. CONCLUSION

This paper has presented the formulation of a gen
method for directly calculating the intensity of light in geo
metrical optics. The method is based on a geometrical st
of wave-front curvature and the way in which the curvatu
evolves as light moves along a ray. The most important f
ture of the method is that the adjacent rays decouple eno
so the intensity can be calculatedone ray at a time, even
though the intensity changes physically reflect the bunch
or dispersal of rays associated with convergent or diverg
beams.

Two examples show how the general equations can
solved. The equations are suitable for numerical applicatio
which are under way. We expect that this method will pr
vide a simple and convenient way to obtain approxim
information about the intensity of light refracted through
dense inhomogeneous fluid, potentially including effects
the index nonlinearity.
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